En el análisis matemático, el teorema de Heine-Borel (también llamado teorema de Heine-Borel-Lebesgue-Bolzano-Weierstraß o incluso teorema de Borel-Lebesgue) es uno que establece condiciones para que un subconjunto de
o de
sea compacto. Cuando se refiere al caso particular de la recta real recibe el nombre de Teorema de Heine-Borel. En el resto de los casos, es frecuente llamarlo Teorema de Borel-Lebesgue.
o de
sea compacto. Cuando se refiere al caso particular de la recta real recibe el nombre de Teorema de Heine-Borel. En el resto de los casos, es frecuente llamarlo Teorema de Borel-Lebesgue.El teorema se enuncia de la siguiente manera:
Si un conjunto
tiene alguna de las siguientes propiedades, entonces tiene las otras dos:
es cerrado y acotado.
es compacto.- Todo subconjunto infinito de
tiene un punto de acumulación en la frontera de
.
Teoremas preliminares
|
Sea
un conjunto cerrado y
un conjunto compacto tales que
.
un conjunto cerrado y
un conjunto compacto tales que
.
Sea
una cubierta abierta de
, entonces
es una cubierta abierta de
(podemos agregar
ya que es abierto). Como
es compacto entonces
tiene un refinamiento finito que también cubre a
. Podemos quitar a
y sigue cubriendo a
. Así obtenemos un refinamiento finito de cualquier cubierta abierta de 
una cubierta abierta de
, entonces
es una cubierta abierta de
(podemos agregar
ya que es abierto). Como
es compacto entonces
tiene un refinamiento finito que también cubre a
. Podemos quitar a
y sigue cubriendo a
. Así obtenemos un refinamiento finito de cualquier cubierta abierta de 
Si no tuviera puntos de acumulación en entonces donde es una epsilon-vecindad y . Es claro que el conjunto de estas vecindades forman una cubierta par pero no tiene un refinamiento finito, lo mismo cumpliría para que contradiría la definición de que es compacto.Toda k-celda es compacta
Sea
una k-celda que consiste de todos los puntos x tal que y . Sea entonces si . Sea una cubierta arbitraria de y supongamos que no se puede cubrir con una cantidad finita de 's.
Tomemos
entonces los intervalos determinan celdas . Entonces por lo menos un no se puede cubrir con una cantidad finita de 's. Lo llamaremos y así obtenemos una sucesión tal que:
Digamos que
, como cubre a entonces . Como es abierto . Si tomamos n suficientemente grande tal que tenemos que este lo cual contradice la suposición de que no se puede cubrir con una cantidad finita de 's.Demostración del teorema de Heine-Borel
Si cumple 1) entonces
para alguna k-celda , y 1) implicaría 2) por los teoremas 1 y 3 anteriores.Si se cumple 2), entonces se cumple 3) por el teorema 2 anterior.Ahora falta demostrar que si cumple 3), entonces cumple 1): Si no es conexo entonces contiene un conjunto { } tal que entonces el subconjunto { } es finito y tiene un límite en , lo cual contradice 3). Si no es abierto entonces existe un elemento que es un punto de acumulación de pero no está en . Para existen tales que , entonces el conjunto { } es infinito y tiene límite contenido en él mismo, lo cual contradice 3). |
, donde
donde
es una eps
. Es claro que el conjunto de estas vecindades forman una cubierta par
una k-celda que consiste de todos los puntos x
tal que
y
. Sea
entonces si
. Sea
y supongamos que
's.
entonces los intervalos
determinan
celdas
. Entonces por lo menos un
no se puede cubrir con una cantidad finita de
y así obtenemos una sucesión
tal que:
.
no se puede cubrir con una cantidad finita de
entonces
.
, como
cubre a
. Como
es abierto
. Si tomamos n suficientemente grande tal que
tenemos que este
lo cual contradice la suposición de que no se puede cubrir con una cantidad finita de
para alguna k-celda
} tal que
entonces el subconjunto {
que es un punto de acumulación de
existen
tales que
, entonces el conjunto {
El teorema de Heine-Borel también llamado teorema de Borel-Lebesgue en el análisis matemático establece: Un subconjunto de es cerrado y acotado si y solo si es compacto, esto es si admite un recubrimiento infinito admite también un recubrimiento finito, en el caso particular aplicado a la recta real recibe propiamente el nombre de Teorema de Heine-Borel fuera de este caso es frecuente llamarlo Teorema de Borel-Lebesgue.
ResponderEliminarMalditos
ResponderEliminar